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ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS

JEAN-MARC COUVEIGNES

ABSTRACT. We give a method for efficiently computing isomorphisms between
towers of Artin-Schreier extensions over a finite field. We find that isomor-
phisms between towers of degree p™ over a fixed field F, can be computed,
composed, and inverted in time essentially linear in p™. The method relies on
an approximation process.

1. INTRODUCTION

Let F, be a finite field with ¢ = p? elements. Let L, be an extension of degree
p™ of F, given as a tower

1) L,D>Lp,1D--DL1 DLy=F,
of nontrivial Artin-Schreier extensions each defined by
Liy1 = Lk(wk+1) with .'Ez_l_l — Zk41 — ok =0 and ag € Lg.

We call n the length of the tower.

Artin-Schreier towers naturally arise in computational algebraic geometry. In
particular, let G = Gal(F,/F,) be the absolute Galois group of F,. Morphisms
between abelian varieties A and B defined over F, induce G-morphisms between
the Tate modules Tp(A) and Tp(B). If £ # p, this correspondence is known to be
bijective by a theorem of Tate [8]. If £ = p, A is simple, and 7;(A) is nonzero,
then the correpondance is injective. Assume the p-torsion of A and B is defined
over F;. One can easily show that the definition field Ly of the pFt1-torsion of
A is an extension of Ly = F, with degree dividing p*. Similarly the definition
field M}, of the p**+1-torsion of B is an extension of My = Lo = F, with degree
dividing p*. Assuming the existence of an isogeny between A and B with prime to
p degree, the fields Ly and My are isomorphic. These fields can be constructed by
taking successive preimages of a p-torsion point by separable isogenies of degree p.
Thus they naturally come as Artin-Schreier towers. In the case of nonsupersingular
elliptic curves, such isogenies are described in terms of Hasse functions. If we are
looking for an isogeny with a given prime to p degree between A and B, we can
compute it by interpolation at enough p*-torsion points. This reduces to computing
an isomorphism between the Artin-Schreier towers we have on each side. This
method is of special interest for computing the cardinality of ordinary elliptic curves
with the Schoof-Elkies-Atkin algorithm. See [2] where the fastest known algorithm
for this purpose is given, assuming the characteristic p is fixed. Surveys on these
questions are in [6, 4, 3, 5].
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We shall prove the following

Theorem 1. An isomorphism between two Artin-Schreier towers L, and M, of
degree p™ over F, = Lo = My can be computed in time O(nSp™) multiplications in
F, for fized ¢ and n — oo.

Computational aspects of Artin-Schreier towers have already been studied by
D. G. Cantor in [1]. For any integer u in [0,p"[ with p-adic expansion u = u; +
U + -+ - + upp™ ! he sets x, = z}'z5? - z%*. The monomials (Xu)o<u<p+ form

a basis X’ of the Lo-vector space Li. If ag = 1 and ar = xpx_1 + 25:)2 CuXy With
all the ¢, € Fy, we say that the tower in formula (1) is a Cantor tower. One of
the results in [1] is that for any prime p there exists a constant K, such that two
elements in a Cantor tower of length n over F,, can be multiplied at the expense of
K,n%p™ operations in F,. The same holds for Cantor towers over a nonnecessarily
prime field F,. We shall need this result and the corresponding algorithm. In
order to compute an isomorphism between two Artin-Schreier towers, we shall first
compute isomophisms between each of the two towers and a given Cantor tower.
The expected isomorphism will then be obtained as a composition of these two
isomorphisms. It is the purpose of Lemma, 1 to state how efficiently isomorphisms
between Artin-Schreier towers can be dealt with.

If ,8 € L, we define the écart d(a, ) to be the logarithm (with base p) of
the degree of the extension Fq(a — 8)/F,. The triangle inequality is easily checked.
Note that d is not a distance since d(e, 8) = 0 if and only if o — B is in F;. On the
other hand, d is invariant under translation.

For any two positive integers ¢ and j we define the following polynomials in F,[X]

®,(X)=X" and pi(X) = X? — X and T}, = X + X7 + X" + ... + X7

The polynomial p; is usually called an isogeny [7]. To simplify we set T; = T; ;.
We have the trivial relations

i-1)j

piop; = p;op; and p;oTi; =T ;0 p; = pij and Tjk o Tpji = Tijik-

If K C L is an extension of finite fields with cardinalities p’ and p¥/, respectively,

we have the following exact sequence of K-vector spaces:
0ok-CB Koo
Assume we are looking for an isomorphism
v: M, —» L,
between two Artin-Schreier towers L,, and M,,, with M,, defined by
M,>Mp, 1D---DM DMy=TF,

and
Micy1 = Mi(yg+1) and y£+1 — Yk+1 — by = 0 with by € M.

We define ¢, = y{*y5? - - - y¥~ similarly to x,. We may assume that an isomor-
phism has already been constructed between L,_; and M, _;. In order to extend
it, we have to solve in L,, an Artin-Schreier equation.

Consider such an equation

() p(Y)=YP-Y =8
with 8 € L,, and T\I’Ln/]pp(ﬂ) =0.
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This is a linear equation over F,,. The corresponding linear system of dimension
dp™ over F, can be solved with Gauss’s algorithm at the expense of O(d3p®")
operations in F,. We notice, however, that equation (2) implies
@) puY)=YP —Y =B+B+- -+ 7 =Ti(p)
which is linear over the intermediate field Fp:. The corresponding linear system
of dimension dp™ /i over F,: can be solved with Gauss’s algorithm at the expense
of O(d3p®"/i%) operations in F:. This is better when multiplication is fast in L,
(e.g., when L, is a Cantor tower).

Equation (3), of course, does not imply equation (2) but if we know a solution
7 to equation (3) and set Y = Z + « in equation (2) we get

p1(Z2)=2"-Z=B—""+7.

Let § = f— 4P +v. We have p;(6) = pi(8) — pi(p1(7)) = pi(8) — p1(pi(7)) =
pi(B) — p1(T3(B)) = 0s0 & € Fpi. We also check easily that T;(6) = Ti(8) —
p1(Ti(7)) = T3(B) — pi(y) = 0. We conclude that the écart between v and any
solution of (2) is at most log,(i/pged(d,i)). We say that ¢ is an approximate
solution to equation (2) with accuracy log,(i/pgcd(s, d)).

Since our strategy is to deal with the smallest possible matrices, we shall take
i = dp™'. This way, for 8 € Ly, and Try, /p,(68) = 0, a solution to Y? —Y = 3 can
be found in three steps:

1. Compute B = Tgpn-1(0).

2. Find a solution v to yr*” L Y = B which amounts to solving a linear
system of dimension p over L,,_.

3. Solve ZP — Z = §, where = 3 — P + v isin L,_; and Try,_,/p,(6) = 0.

And the same method is applied recursively to the equation in step 3. After
k steps, we obtain an approximate solution to equation (2) with accuracy n — k.
After n steps, we reduce to an Artin-Schreier equation over the base field F,.

In the rest of this paper, we provide details and a complexity analysis for the
algorithm sketched above.

2. ARTIN-SCHREIER TOWERS

We recall a few elementary facts about Artin-Schreier extensions. Let K be a
field of characteristic p, not necessarily finite, and £ = K[X]/(X? — X — @) an
Artin-Schreier extension. Set x = X mod X? — X — a. Its conjugates are the x + ¢
with ¢ € Fp,. The trace is given by

Tree( Y, wia') = —up 1 whenw; €K

0<i<p—-1
and the dual basis of (1,z,2?%,...,2P7 1) is (—2P~ 1 + 1, —2P~2, —2P73 ... —z,—1).
In such an Artin-Schreier extension, p-powers are easy to compute. Indeed
(4) 27" = (¢ + Th(a))"

In particular if K is the field F, with ¢ = p? elements then
gl = (z+ T, /¥, (@))%

and Try_/p,(a) is in F,. Thus the p X p matrix of the Frobenius automorphism
z +— 7 has coefficients in F,,.
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We shall first prove a few complexity estimates concerning basic computations
with isomorphisms bewteen Artin-Schreier towers over finite fields.
We consider an isomorphism ¢ between two towers L, and M,:

L: M, — L,.

The computer representation of ¢ will consist of the images of the yi by ¢ for
0<i<p-—-land1<k<n.

We shall see that this representation is very efficient. For 0 < k < n, we denote
by CE(k) the complexity of multiplication in L. This complexity is given as a
number of multiplications in the base field F,, disregarding additions. We denote
by CM (k) the complexity of multiplication in Mj. Let C,(n) be the cost of evaluating
¢ at some p in M,,. Let C*(n) be the complexity of computing ¢~!(v) for v in L.

We shall first prove the following

Lemma 1. Given an isomorphism v : M, — L, between two Artin-Schreier tow-
ers, we have, with the notation given above

(5) C.(n) < pnCL(n),
(6) C*(n) < 2np°CL(n),
(7) CM(n) < 4np®CL(n).

We first prove inequality (5). For p € M, let us write p = 205i5p~1 Wiyl with
Bi € Mp_q. Then o(u) = Y, ¢(u:)e(y:) and since we have stored the ¢(y%), we
reduce to computing p multiplications in L, and the images ¢(u;). Therefore

C.(n) < p(C.(n 1) +Cx(n))
and the result follows iterating the above inequality and using the easy inequality
Cx(n) > pCi(n—1).

In order to compute the inverse image of v € L,,, we first express v as a linear
combination

(8) v= 3 vly)
0<i<p—1

with v; € L,,_; for all . This is achieved at the expense of 2p® multiplications in
L, using Gauss’s algorithm. From equation (8) we deduce

Ty = Y e
0<i<p—1
We thus reduce to computing the p preimages of the v; € L,,_;. Therefore
C?(n) < 2p°CX(n) +pCl(n— 1)

and inequality (6) follows.

Inequality (7) follows easily from inequalities (5) and (6). This shows that if we
can multiply efficiently in L,, the knowledge of ¢ allows fast multiplication in M,
as well.

The crucial step in our isomorphism computations will be the evaluation of
polynomials T; ; at numbers u that are not necessarily in Fp:;. Lemma 2 states how

)
efficiently one can compute @4, (1) = ,u,pdp and Ty, (u) for p € Ly and 0 < 1 < k.
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We denote by C(l, k) the complexity of computing @4, (1) for p € L. We
denote by C%(1, k) the complexity of computing Ty (u) for p € L. In order to
compute Ty, (1) we notice that
(9) Tgpr =Tg0Tp g0+ 0Ty, gpi-20T, gpi-1.

Using this formula we obtain
(10)

CE(l,k) <p(Ci(l —1,k) +C5(l — 2,k) +--- +Cg(1,k) + C§(0,k)) + pd C% (k).

If we now want to compute ®,,(u) we use formula (4). Writing p =
ZOS‘iSP—l w;xy, we have

(11)
()= D, Pup(p)@ap(ah) = Y B (i) (@r + T (ar-1))’
0<i<p-1 0<i<p-1
since =¥ — ) = ak_1.

We first assume that we already computed and stored the Ty, (ax) and their first
p powers for all [ and « such that 0 <1 < k < k, which is the same as computing
the expansions of polynomials (z + Ty (ax)) for 0 <i < p—1.

We call CE(l,k) the complexity of computing ®gpt (1) for p € Ly under this
assumption. We define C%(l, k) to be the complexity of computing Tyt () for
u € L in the same situation.

From equation (11) we deduce

Ci(,k) <pCi(lLk—1)+p*CL(k—1).
Since C%(l,k) = 0 as soon as | > k, we obtain
C3 (k) < p(k =) Cx (),
and from equation (10) and the definition of T,
(12) CE(1,k) < (p*kl + pd) CE (k) < 2p2kld CE (k).

We now bound the cost C%;; (k) of precomputing all the Ty, (a.) and their first
p powers for all [ and k such that 0 <!l <k < k.

We first bound CZ;(k + 1) — CL;, (k). Indeed if we already know the Ty (ax)
and their first p powers for all 0 < 1 < k < k, then computing the Ty, (ax) for all
0 < < k will require less than 2(k + 1)p?k2d CZ (k) multiplications (using formula
(12)) and computing the powers will take time p(k + 1) CZ (k). Therefore

Chic(k+1) < Clhyp(k) + (k + 1) (p + 2p°k?d) CL (k).
‘We obtain
CL..(k) < 6p?k3dCL(k).

Lemma 2. For 0 <1 < k and for any p in Ly, one can compute ® gy (u) (resp.
Tup (1)) in time C5(1, k) (resp. CE(1, k)) with

(13) Ci(,k) < p(k—1)Cx(k),
(14) CE(lL,k) < 2p°kldCL(k),
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using data that only depend on Ly and can be computed once and for all in time
CL.. (k) with

(15) cLi.(k) < 6p*k*dCL (k).

We call C44(n) the complexity of solving equation (2) in L, for 8 € L, and
Trz,/r,(8) = Tapn(B) = 0. We shall adopt the three steps strategy described in
the introduction.

We first compute and store the Ty, (ax) for all 0 < I < k < n. This takes

time CL, (n). We call Ckg(n) the complexity of solving equation (2) once all this
precomputation has been done.

In these conditions, step 1 (the computation of B = Ty,n-1(8)) will take time

Ci(n—1,n).
The second step reduces to computing the p X p matrix representing the L, _1-
linear map @gpn-1 : Ln — Ly in the basis (1,2n,22,...,2271). Using Gauss’s

algorithm, we then find a solution -y to the equation pg,n-1(y) = B.
All this is achieved at the expense of pCL (n—1,n)+2p® CL (n—1) multiplications.
The third step is done in time pCZ(n) 4+ Chg(n — 1). We thus have

Clis(n) <Cls(n—1)+Ci(n—1,n) +pCg(n—1,n) + 20°C%(n — 1) + pCL(n),
and using Lemma 2, |
Chs(n) < Chs(n —1) + 6p*n2dCE(n).
Thus
(16) CLs(n) < 12n%p%dCL(n) +Cas .

where Cags = Cfl 5(0) is the complexity of solving an Artin-Schreier equation in the
base field IF,.

We now want to compute an isomorphism between two Artin-Schreier towers of
length n over Fy:

L,DL,1D---DL1DLy=F,

and
M,D>M,_1D---DM DM0=]Fq.

We look for an isomorphism ¢ : M,, — Ly given by t(y%) for 0 < i < p and
0<k<n.

We let the length k increase from 0 to n. We call C; (k) the complexity of com-
puting an isomorphism from My, to L. We call éf,f(k) the complexity of computing
an isomorphism from M}, to Ly assuming the Ty (a,) have been computed for all
0 <1<k <k We want to bound C¥(n) — CL (n — 1). Thus assume we have
computed the isomorphism up to length n — 1. In order to go further we have to
solve the Artin-Schreier extension

(17) Y~ ¥ = u(ba1)

over L,. We first apply ¢ to b,—1 in time C,(n — 1). Solving equation (17) takes
time C%g(n). We take ¢(y,) to be one of the solutions we found. We then compute
the powers ¢(y,)" for 0 <4 < p — 1, which takes time pCL(n). We thus have

Cir(n) < Ciy(n—1) +C.(n— 1) + C4g(n) + pCL(n),
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and using Lemma 1 and inequality (16),
CE(n) < C%(n— 1)+ 14n2p?dCL(n) + Cas .
Summing up we have
Cir(n) < 28n°p®dC¥(n) + nCas,
and using (15),
(18) CE(n) < 34n®pdCL(n) + nCas .

Assume now we have a third Artin-Schreier tower N,, over F,. We shall relate the
complexity CZ(n) of multiplication in L, and the complexity C¥ (n) of computing
an isomorphism from N, to M,. This makes sense in case L, has been designed
to allow fast multiplication (e.g., L, is a Cantor tower).

We first compute an isomorphism ¢; from M, to L, at the expense of C¥(n)
multiplications in F,. We then compute an isomorphism ¢y from N, to M, at the
expense of

¥ (n) < 34n3p?dCY (n) + nCas
multiplications in F,. Using inequality (18) and inequality (7) we find

Lemma 3. Let L,,, M,,, N, be three Artin-Schreier towers of length n over Fy the
field with ¢ = p® elements and let CZ(n) be the complexity of multiplication in L., .
Let Cags be the complezity of solving an Artin-Schreier equation in F,. An isomor-
phism between M,, and N, can be found at the expense of C¥ (n) multiplications in
Fq with

Cc¥(n) < 170p°n*dCL(n) 4+ 2nCas .

If we take L, to be a Cantor tower we have CZ(n) < K,n%p™, where K, only
depends on q. Using the Berlekamp factorization algorithm we have Cag = O(pd),
and Theorem 1 follows.
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