ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS

JEAN-MARC COUVEIGNES

ABSTRACT. We give a method for efficiently computing isomorphisms between towers of Artin-Schreier extensions over a finite field. We find that isomorphisms between towers of degree p^n over a fixed field \mathbb{F}_q can be computed, composed, and inverted in time essentially linear in p^n . The method relies on an approximation process.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field with $q = p^d$ elements. Let L_n be an extension of degree p^n of \mathbb{F}_q given as a tower

(1)
$$L_n \supset L_{n-1} \supset \cdots \supset L_1 \supset L_0 = \mathbb{F}_q$$

of nontrivial Artin-Schreier extensions each defined by

$$L_{k+1} = L_k(x_{k+1}) \text{ with } x_{k+1}^p - x_{k+1} - a_k = 0 \text{ and } a_k \in L_k.$$

We call n the *length* of the tower.

Artin-Schreier towers naturally arise in computational algebraic geometry. In particular, let $G = \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ be the absolute Galois group of \mathbb{F}_q . Morphisms between abelian varieties A and B defined over \mathbb{F}_q induce G-morphisms between the Tate modules $\mathcal{T}_{\ell}(A)$ and $\mathcal{T}_{\ell}(B)$. If $\ell \neq p$, this correspondence is known to be bijective by a theorem of Tate [8]. If $\ell = p$, A is simple, and $\mathcal{T}_{\ell}(A)$ is nonzero, then the correspondance is injective. Assume the p-torsion of A and B is defined over \mathbb{F}_q . One can easily show that the definition field L_k of the p^{k+1} -torsion of A is an extension of $L_0 = \mathbb{F}_q$ with degree dividing p^k . Similarly the definition field M_k of the p^{k+1} -torsion of B is an extension of $M_0 = L_0 = \mathbb{F}_q$ with degree dividing p^k . Assuming the existence of an isogeny between A and B with prime to p degree, the fields L_k and M_k are isomorphic. These fields can be constructed by taking successive preimages of a p-torsion point by separable isogenies of degree p. Thus they naturally come as Artin-Schreier towers. In the case of nonsupersingular elliptic curves, such isogenies are described in terms of Hasse functions. If we are looking for an isogeny with a given prime to p degree between A and B, we can compute it by interpolation at enough p^k -torsion points. This reduces to computing an isomorphism between the Artin-Schreier towers we have on each side. This method is of special interest for computing the cardinality of ordinary elliptic curves with the Schoof-Elkies-Atkin algorithm. See [2] where the fastest known algorithm for this purpose is given, assuming the characteristic p is fixed. Surveys on these questions are in [6, 4, 3, 5].

Received by the editor February 5, 1997 and, in revised form, July 24, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11Y40; Secondary 12E20.

We shall prove the following

Theorem 1. An isomorphism between two Artin-Schreier towers L_n and M_n of degree p^n over $\mathbb{F}_q = L_0 = M_0$ can be computed in time $O(n^6p^n)$ multiplications in \mathbb{F}_q for fixed q and $n \to \infty$.

Computational aspects of Artin-Schreier towers have already been studied by D. G. Cantor in [1]. For any integer u in $[0, p^n]$ with p-adic expansion $u = u_1 + u_2p + \cdots + u_np^{n-1}$ he sets $\chi_u = x_1^{u_1} x_2^{u_2} \cdots x_n^{u_n}$. The monomials $(\chi_u)_{0 \le u < p^k}$ form a basis \mathcal{X} of the L_0 -vector space L_k . If $a_0 = 1$ and $a_k = \chi_{p^k-1} + \sum_{u=0}^{p^k-2} c_u \chi_u$ with all the $c_u \in \mathbb{F}_q$, we say that the tower in formula (1) is a *Cantor tower*. One of the results in [1] is that for any prime p there exists a constant K_p such that two elements in a Cantor tower of length n over \mathbb{F}_p can be multiplied at the expense of $K_p n^2 p^n$ operations in \mathbb{F}_p . The same holds for Cantor towers over a nonnecessarily prime field \mathbb{F}_q . We shall need this result and the corresponding algorithm. In order to compute an isomorphism between two Artin-Schreier towers, we shall first compute isomophisms between each of the two towers and a given Cantor tower. The expected isomorphism will then be obtained as a composition of these two isomorphisms. It is the purpose of Lemma 1 to state how efficiently isomorphisms between Artin-Schreier towers can be dealt with.

If $\alpha, \beta \in L_n$, we define the *écart* $\mathbf{d}(\alpha, \beta)$ to be the logarithm (with base p) of the degree of the extension $\mathbb{F}_q(\alpha - \beta)/\mathbb{F}_q$. The triangle inequality is easily checked. Note that \mathbf{d} is not a distance since $\mathbf{d}(\alpha, \beta) = 0$ if and only if $\alpha - \beta$ is in \mathbb{F}_q . On the other hand, \mathbf{d} is invariant under translation.

For any two positive integers i and j we define the following polynomials in $\mathbb{F}_p[X]$

$$\Phi_i(X) = X^{p^i}$$
 and $\wp_i(X) = X^{p^i} - X$ and $T_{i,j} = X + X^{p^j} + X^{p^{2j}} + \dots + X^{p^{(i-1)}}$

The polynomial \wp_i is usually called an isogeny [7]. To simplify we set $T_i = T_{i,1}$. We have the trivial relations

 $\wp_i \circ \wp_j = \wp_j \circ \wp_i$ and $\wp_j \circ T_{i,j} = T_{i,j} \circ \wp_j = \wp_{ij}$ and $T_{j,k} \circ T_{i,jk} = T_{ij,k}$.

If $\mathcal{K} \subset \mathcal{L}$ is an extension of finite fields with cardinalities p^j and p^{ij} , respectively, we have the following exact sequence of \mathcal{K} -vector spaces:

 $0 \to \mathcal{K} \to \mathcal{L} \stackrel{\wp_j}{\to} \mathcal{L} \stackrel{T_{i,j}}{\to} \mathcal{K} \to 0.$

Assume we are looking for an isomorphism

$$\iota: M_n \to L_n$$

between two Artin-Schreier towers L_n and M_n , with M_n defined by

$$M_n \supset M_{n-1} \supset \cdots \supset M_1 \supset M_0 = \mathbb{F}_q$$

and

$$M_{k+1} = M_k(y_{k+1})$$
 and $y_{k+1}^p - y_{k+1} - b_k = 0$ with $b_k \in M_k$.

We define $\zeta_u = y_1^{u_1} y_2^{u_2} \cdots y_n^{u_n}$ similarly to χ_u . We may assume that an isomorphism has already been constructed between L_{n-1} and M_{n-1} . In order to extend it, we have to solve in L_n an Artin-Schreier equation.

Consider such an equation

(2)
$$\wp_1(Y) = Y^p - Y = \beta.$$

with $\beta \in L_n$ and $\operatorname{Tr}_{L_n/\mathbb{F}_p}(\beta) = 0$.

This is a linear equation over \mathbb{F}_p . The corresponding linear system of dimension dp^n over \mathbb{F}_p can be solved with Gauss's algorithm at the expense of $O(d^3p^{3n})$ operations in \mathbb{F}_p . We notice, however, that equation (2) implies

(3)
$$\varphi_i(Y) = Y^{p^i} - Y = \beta + \beta^p + \dots + \beta^{p^{i-1}} = T_i(\beta)$$

which is linear over the intermediate field \mathbb{F}_{p^i} . The corresponding linear system of dimension dp^n/i over \mathbb{F}_{p^i} can be solved with Gauss's algorithm at the expense of $O(d^3p^{3n}/i^3)$ operations in \mathbb{F}_{p^i} . This is better when multiplication is fast in L_n (e.g., when L_n is a Cantor tower).

Equation (3), of course, does not imply equation (2) but if we know a solution γ to equation (3) and set $Y = Z + \gamma$ in equation (2) we get

$$\wp_1(Z) = Z^p - Z = \beta - \gamma^p + \gamma.$$

Let $\delta = \beta - \gamma^p + \gamma$. We have $\wp_i(\delta) = \wp_i(\beta) - \wp_i(\wp_1(\gamma)) = \wp_i(\beta) - \wp_1(\wp_i(\gamma)) = \wp_i(\beta) - \wp_1(T_i(\beta)) = 0$ so $\delta \in \mathbb{F}_{p^i}$. We also check easily that $T_i(\delta) = T_i(\beta) - \wp_1(T_i(\gamma)) = T_i(\beta) - \wp_i(\gamma) = 0$. We conclude that the *écart* between γ and any solution of (2) is at most $\log_p(i/\operatorname{pgcd}(d, i))$. We say that δ is an approximate solution to equation (2) with accuracy $\log_p(i/\operatorname{pgcd}(i, d))$.

Since our strategy is to deal with the smallest possible matrices, we shall take $i = dp^{n-1}$. This way, for $\beta \in L_n$ and $\operatorname{Tr}_{L_n/\mathbb{F}_p}(\beta) = 0$, a solution to $Y^p - Y = \beta$ can be found in three steps:

- 1. Compute $B = T_{dp^{n-1}}(\beta)$.
- 2. Find a solution γ to $Y^{p^{dp^{n-1}}} Y = B$ which amounts to solving a linear system of dimension p over L_{n-1} .
- 3. Solve $Z^p Z = \delta$, where $\delta = \beta \gamma^p + \gamma$ is in L_{n-1} and $\operatorname{Tr}_{L_{n-1}/\mathbb{F}_p}(\delta) = 0$.

And the same method is applied recursively to the equation in step 3. After k steps, we obtain an approximate solution to equation (2) with accuracy n - k. After n steps, we reduce to an Artin-Schreier equation over the base field \mathbb{F}_q .

In the rest of this paper, we provide details and a complexity analysis for the algorithm sketched above.

2. Artin-Schreier towers

We recall a few elementary facts about Artin-Schreier extensions. Let \mathcal{K} be a field of characteristic p, not necessarily finite, and $\mathcal{L} = \mathcal{K}[X]/(X^p - X - \alpha)$ an Artin-Schreier extension. Set $x = X \mod X^p - X - \alpha$. Its conjugates are the x + c with $c \in \mathbb{F}_p$. The trace is given by

$$\mathrm{Tr}_{\mathcal{L}/\mathcal{K}}(\sum_{0\leq i\leq p-1}u_ix^i)=-u_{p-1} ext{ when } u_i\in\mathcal{K}$$

and the dual basis of $(1, x, x^2, ..., x^{p-1})$ is $(-x^{p-1}+1, -x^{p-2}, -x^{p-3}, ..., -x, -1)$. In such an Artin-Schreier extension, *p*-powers are easy to compute. Indeed

(4)
$$x^{ip^h} = (x + T_h(\alpha))^i$$

In particular if \mathcal{K} is the field \mathbb{F}_q with $q = p^d$ elements then

$$x^{iq} = (x + \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(\alpha))^i,$$

and $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(\alpha)$ is in \mathbb{F}_p . Thus the $p \times p$ matrix of the Frobenius automorphism $x \mapsto x^q$ has coefficients in \mathbb{F}_p .

We shall first prove a few complexity estimates concerning basic computations with isomorphisms bewteen Artin-Schreier towers over finite fields.

We consider an isomorphism ι between two towers L_n and M_n :

$$\iota: M_n \to L_n.$$

The computer representation of ι will consist of the images of the y_k^i by ι for $0 \leq i \leq p-1$ and $1 \leq k \leq n$.

We shall see that this representation is very efficient. For $0 \le k \le n$, we denote by $\mathcal{C}^L_{\mathbf{x}}(k)$ the complexity of multiplication in L_k . This complexity is given as a number of multiplications in the base field \mathbb{F}_q , disregarding additions. We denote by $\mathcal{C}^{M}_{\times}(k)$ the complexity of multiplication in M_k . Let $\mathcal{C}_{\iota}(n)$ be the cost of evaluating ι at some μ in M_n . Let $\mathcal{C}^{\bullet}_{\iota}(n)$ be the complexity of computing $\iota^{-1}(\nu)$ for ν in L_n .

We shall first prove the following

Lemma 1. Given an isomorphism $\iota: M_n \to L_n$ between two Artin-Schreier towers, we have, with the notation given above

(5)
$$\mathcal{C}_{\iota}(n) \leq pn \mathcal{C}^{L}_{\times}(n),$$

(6)
$$\mathcal{C}^{\bullet}_{\iota}(n) \leq 2np^{3}\mathcal{C}^{L}_{\times}(n)$$

 $\begin{array}{rcl} \mathbf{c}_{\iota}\left(n\right) &\leq& 2np^{\mathrm{s}}\,\mathcal{C}_{\times}^{L}(n),\\ \mathcal{C}_{\times}^{M}(n) &\leq& 4np^{3}\,\mathcal{C}_{\times}^{L}(n). \end{array}$ (7)

We first prove inequality (5). For $\mu \in M_n$, let us write $\mu = \sum_{0 \le i \le p-1} \mu_i y_n^i$ with $\mu_i \in M_{n-1}$. Then $\iota(\mu) = \sum_i \iota(\mu_i)\iota(y_n^i)$ and since we have stored the $\iota(y_n^i)$, we reduce to computing p multiplications in L_n and the images $\iota(\mu_i)$. Therefore

$$\mathcal{C}_{\iota}(n) \leq p(\mathcal{C}_{\iota}(n-1) + \mathcal{C}^{L}_{\times}(n))$$

and the result follows iterating the above inequality and using the easy inequality

$$\mathcal{C}^L_{\times}(n) \ge p \mathcal{C}^L_{\times}(n-1).$$

In order to compute the inverse image of $\nu \in L_n$, we first express ν as a linear combination

(8)
$$\nu = \sum_{0 \le i \le p-1} \nu_i \iota(y_n^i)$$

with $\nu_i \in L_{n-1}$ for all *i*. This is achieved at the expense of $2p^3$ multiplications in L_n using Gauss's algorithm. From equation (8) we deduce

$$\iota^{-1}(
u) = \sum_{0 \le i \le p-1} \iota^{-1}(
u_i) y_n^i.$$

We thus reduce to computing the p preimages of the $\nu_i \in L_{n-1}$. Therefore

$$\mathcal{C}^{\bullet}_{\iota}(n) \leq 2p^3 \, \mathcal{C}^L_{\times}(n) + p \, \mathcal{C}^{\bullet}_{\iota}(n-1)$$

and inequality (6) follows.

Inequality (7) follows easily from inequalities (5) and (6). This shows that if we can multiply efficiently in L_n , the knowledge of ι allows fast multiplication in M_n as well.

The crucial step in our isomorphism computations will be the evaluation of polynomials $T_{i,j}$ at numbers μ that are not necessarily in $\mathbb{F}_{p^{ij}}$. Lemma 2 states how efficiently one can compute $\Phi_{dp^l}(\mu) = \mu^{p^{dp^l}}$ and $T_{dp^l}(\mu)$ for $\mu \in L_k$ and $0 \le l \le k$.

1628

We denote by $\mathcal{C}_{\Phi}^{L}(l,k)$ the complexity of computing $\Phi_{dp^{l}}(\mu)$ for $\mu \in L_{k}$. We denote by $\mathcal{C}_{T}^{L}(l,k)$ the complexity of computing $T_{dp^{l}}(\mu)$ for $\mu \in L_{k}$. In order to compute $T_{dp^{l}}(\mu)$ we notice that

(9)
$$T_{dp^l} = T_d \circ T_{p,d} \circ \cdots \circ T_{p,dp^{l-2}} \circ T_{p,dp^{l-1}}$$

Using this formula we obtain

(10)

$$\mathcal{C}_T^L(l,k) \le p(\mathcal{C}_\Phi^L(l-1,k) + \mathcal{C}_\Phi^L(l-2,k) + \dots + \mathcal{C}_\Phi^L(1,k) + \mathcal{C}_\Phi^L(0,k)) + pd\mathcal{C}_{\times}^L(k).$$

If we now want to compute $\Phi_{dp^{l}}(\mu)$ we use formula (4). Writing $\mu = \sum_{0 \le i \le p-1} \mu_{i} x_{k}^{i}$ we have

(11)

$$\Phi_{dp^l}(\mu) = \sum_{0 \le i \le p-1} \Phi_{dp^l}(\mu_i) \Phi_{dp^l}(x_k^i) = \sum_{0 \le i \le p-1} \Phi_{dp^l}(\mu_i) (x_k + T_{dp^l}(a_{k-1}))^i$$

since $x_k^p - x_k = a_{k-1}$.

We first assume that we already computed and stored the $T_{dp^{l}}(a_{\kappa})$ and their first p powers for all l and κ such that $0 \leq l \leq \kappa < k$, which is the same as computing the expansions of polynomials $(x + T_{dp^{l}}(a_{\kappa}))^{i}$ for $0 \leq i \leq p - 1$.

We call $\tilde{\mathcal{C}}_{\Phi}^{L}(l,k)$ the complexity of computing $\Phi_{dp^{l}}(\mu)$ for $\mu \in L_{k}$ under this assumption. We define $\tilde{\mathcal{C}}_{T}^{L}(l,k)$ to be the complexity of computing $T_{dp^{l}}(\mu)$ for $\mu \in L_{k}$ in the same situation.

From equation (11) we deduce

$$\tilde{\mathcal{C}}_{\Phi}^{L}(l,k) \leq p \, \tilde{\mathcal{C}}_{\Phi}^{L}(l,k-1) + p^2 \, \mathcal{C}_{\times}^{L}(k-1).$$

Since $\mathcal{C}_{\Phi}^{L}(l,k) = 0$ as soon as $l \geq k$, we obtain

$$\tilde{\mathcal{C}}_{\Phi}^{L}(l,k) \leq p(k-l) \, \mathcal{C}_{\times}^{L}(k),$$

and from equation (10) and the definition of $T_{dp^{l}}$

(12)
$$\tilde{\mathcal{C}}_T^L(l,k) \le (p^2kl + pd) \, \mathcal{C}_{\times}^L(k) \le 2p^2kld \, \mathcal{C}_{\times}^L(k).$$

We now bound the cost $C_{\text{init}}^{L}(k)$ of precomputing all the $T_{dp^{l}}(a_{\kappa})$ and their first p powers for all l and κ such that $0 \leq l \leq \kappa < k$.

We first bound $C_{\text{init}}^{L}(k+1) - C_{\text{init}}^{L}(k)$. Indeed if we already know the $T_{dp^{l}}(a_{\kappa})$ and their first p powers for all $0 \leq l \leq \kappa < k$, then computing the $T_{dp^{l}}(a_{k})$ for all $0 \leq l \leq k$ will require less than $2(k+1)p^{2}k^{2}dC_{\times}^{L}(k)$ multiplications (using formula (12)) and computing the powers will take time $p(k+1)C_{\times}^{L}(k)$. Therefore

$$\mathcal{C}_{\text{init}}^{L}(k+1) \leq \mathcal{C}_{\text{init}}^{L}(k) + (k+1)(p+2p^{2}k^{2}d) \mathcal{C}_{\times}^{L}(k).$$

We obtain

$$\mathcal{C}_{ ext{init}}^{L}(k) \leq 6p^{2}k^{3}d\mathcal{C}_{ imes}^{L}(k).$$

Lemma 2. For $0 \leq l \leq k$ and for any μ in L_k , one can compute $\Phi_{dp^l}(\mu)$ (resp. $T_{dp^l}(\mu)$) in time $\tilde{C}_{\Phi}^L(l,k)$ (resp. $\tilde{C}_T^L(l,k)$) with

- (13) $\tilde{\mathcal{C}}_{\Phi}^{L}(l,k) \leq p(k-l) \mathcal{C}_{\times}^{L}(k),$

using data that only depend on L_k and can be computed once and for all in time $C_{init}^L(k)$ with

(15)
$$\mathcal{C}_{\text{init}}^{L}(k) \leq 6p^{2}k^{3}d\mathcal{C}_{\times}^{L}(k).$$

We call $C_{AS}^{L}(n)$ the complexity of solving equation (2) in L_n for $\beta \in L_n$ and $\operatorname{Tr}_{L_n/\mathbb{F}_p}(\beta) = T_{dp^n}(\beta) = 0$. We shall adopt the three steps strategy described in the introduction.

We first compute and store the $T_{dp^l}(a_{\kappa})$ for all $0 \leq l \leq \kappa < n$. This takes time $C_{\text{init}}^L(n)$. We call $\tilde{C}_{AS}^L(n)$ the complexity of solving equation (2) once all this precomputation has been done.

In these conditions, step 1 (the computation of $B = T_{dp^{n-1}}(\beta)$) will take time $\tilde{C}_T^L(n-1,n)$.

The second step reduces to computing the $p \times p$ matrix representing the L_{n-1} linear map $\wp_{dp^{n-1}} : L_n \to L_n$ in the basis $(1, x_n, x_n^2, \dots, x_n^{p-1})$. Using Gauss's algorithm, we then find a solution γ to the equation $\wp_{dp^{n-1}}(\gamma) = B$.

All this is achieved at the expense of $p\tilde{\mathcal{C}}_{\Phi}^{L}(n-1,n)+2p^{3}\mathcal{C}_{\times}^{L}(n-1)$ multiplications. The third step is done in time $p\mathcal{C}_{\times}^{L}(n)+\tilde{\mathcal{C}}_{AS}^{L}(n-1)$. We thus have

$$\tilde{\mathcal{C}}_{AS}^L(n) \leq \tilde{\mathcal{C}}_{AS}^L(n-1) + \tilde{\mathcal{C}}_T^L(n-1,n) + p \,\tilde{\mathcal{C}}_{\Phi}^L(n-1,n) + 2p^3 \,\mathcal{C}_{\times}^L(n-1) + p \,\mathcal{C}_{\times}^L(n),$$

and using Lemma 2,

$$\tilde{\mathcal{C}}_{AS}^{L}(n) \leq \tilde{\mathcal{C}}_{AS}^{L}(n-1) + 6p^2 n^2 d \, \mathcal{C}_{\times}^{L}(n).$$

Thus

(16)
$$\tilde{\mathcal{C}}_{AS}^{L}(n) \leq 12n^{2}p^{2}d\mathcal{C}_{\times}^{L}(n) + \mathcal{C}_{AS}.$$

where $C_{AS} = C_{AS}^{L}(0)$ is the complexity of solving an Artin-Schreier equation in the base field \mathbb{F}_{q} .

We now want to compute an isomorphism between two Artin-Schreier towers of length n over \mathbb{F}_q :

$$L_n \supset L_{n-1} \supset \cdots \supset L_1 \supset L_0 = \mathbb{F}_q$$

 and

$$M_n \supset M_{n-1} \supset \cdots \supset M_1 \supset M_0 = \mathbb{F}_q.$$

We look for an isomorphism $\iota: M_n \to L_n$ given by $\iota(y_k^i)$ for $0 \le i < p$ and $0 \le k \le n$.

We let the length k increase from 0 to n. We call $C_M^L(k)$ the complexity of computing an isomorphism from M_k to L_k . We call $\tilde{C}_M^L(k)$ the complexity of computing an isomorphism from M_k to L_k assuming the $T_{dp^l}(a_\kappa)$ have been computed for all $0 \leq l \leq \kappa < k$. We want to bound $\tilde{C}_M^L(n) - \tilde{C}_M^L(n-1)$. Thus assume we have computed the isomorphism up to length n-1. In order to go further we have to solve the Artin-Schreier extension

(17)
$$Y^p - Y = \iota(b_{n-1})$$

over L_n . We first apply ι to b_{n-1} in time $C_{\iota}(n-1)$. Solving equation (17) takes time $\tilde{C}_{AS}^L(n)$. We take $\iota(y_n)$ to be one of the solutions we found. We then compute the powers $\iota(y_n)^i$ for $0 \le i \le p-1$, which takes time $p \mathcal{C}^L_{\times}(n)$. We thus have

$$\tilde{\mathcal{C}}_{M}^{L}(n) \leq \tilde{\mathcal{C}}_{M}^{L}(n-1) + \mathcal{C}_{\iota}(n-1) + \tilde{\mathcal{C}}_{AS}^{L}(n) + p \, \mathcal{C}_{\times}^{L}(n),$$

and using Lemma 1 and inequality (16),

$$\tilde{\mathcal{C}}_M^L(n) \leq \tilde{\mathcal{C}}_M^L(n-1) + 14n^2 p^2 d \, \mathcal{C}_{\times}^L(n) + \mathcal{C}_{AS} \, .$$

Summing up we have

$$ilde{\mathcal{C}}^L_M(n) \leq 28n^2p^2 d\, {\mathcal{C}}^L_ imes(n) + n\, {\mathcal{C}}_{AS},$$

and using (15),

(18)
$$\mathcal{C}_M^L(n) \le 34n^3 p^2 d \mathcal{C}_{\times}^L(n) + n \mathcal{C}_{AS}.$$

Assume now we have a third Artin-Schreier tower N_n over \mathbb{F}_q . We shall relate the complexity $\mathcal{C}^L_{\times}(n)$ of multiplication in L_n and the complexity $\mathcal{C}^M_N(n)$ of computing an isomorphism from N_n to M_n . This makes sense in case L_n has been designed to allow fast multiplication (e.g., L_n is a Cantor tower).

We first compute an isomorphism ι_1 from M_n to L_n at the expense of $\mathcal{C}_M^L(n)$ multiplications in \mathbb{F}_q . We then compute an isomorphism ι_2 from N_n to M_n at the expense of

$$\mathcal{C}_N^M(n) \leq 34n^3p^2 d\,\mathcal{C}_{ imes}^M(n) + n\,\mathcal{C}_{AS}$$

multiplications in \mathbb{F}_q . Using inequality (18) and inequality (7) we find

Lemma 3. Let L_n , M_n , N_n be three Artin-Schreier towers of length n over \mathbb{F}_q the field with $q = p^d$ elements and let $\mathcal{C}^L_{\times}(n)$ be the complexity of multiplication in L_n . Let \mathcal{C}_{AS} be the complexity of solving an Artin-Schreier equation in \mathbb{F}_q . An isomorphism between M_n and N_n can be found at the expense of $\mathcal{C}^M_N(n)$ multiplications in \mathbb{F}_q with

$$\mathcal{C}_N^M(n) \le 170 p^5 n^4 d \, \mathcal{C}_{\times}^L(n) + 2n \, \mathcal{C}_{AS} \, .$$

If we take L_n to be a Cantor tower we have $\mathcal{C}^L_{\times}(n) \leq K_q n^2 p^n$, where K_q only depends on q. Using the Berlekamp factorization algorithm we have $\mathcal{C}_{AS} = O(p^3 d)$, and Theorem 1 follows.

References

- David G. Cantor, On arithmetical algorithms over finite fields, Journal of Combinatorics, series A 50 (1989), 285–300. MR 90f:11100
- [2] Jean-Marc Couveignes, Computing l-isogenies with the p-torsion, Algorithmic Number Theory, A.N.T.S. II (H. Cohen, ed.), vol. 1122, Springer, 1996, pp. 59–65. MR 98j:11046
- [3] Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory, in honor of A.O.L Atkin, AMS/IP Studies in Advanced Mathematics, vol. 7, AMS/IP, 1998, pp. 21-76. MR 99a:11078
- [4] Reynald Lercier and François Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in Cryptology, EUROCRYPT 95 (L.C. Guillou and J.-J. Quisquater, eds.), Lecture Notes in Computer Science, vol. 921, Springer, 1995, pp. 79–94.
- [5] _____, Algorithms for computing isogenies between elliptic curves, Computational perspectives on number theory, in honor of A.O.L. Atkin, AMS/IP Studies in Advanced Mathematics, vol. 7, AMS/IP, 1998, pp. 77–94. MR 96h:11060
- [6] René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1995), no. 1. MR 97i:11070
- [7] Jean-Pierre Serre, Groupes algébriques et corps de classes, Hermann, 1959. MR 21:1973
- [8] John Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Math. 2 (1966), 134-144. MR 34:5829

GROUPE DE RECHERCHE EN MATHÉMATIQUES ET INFORMATIQUE DU MIRAIL, UNIVERSITÉ DE TOULOUSE II, LE MIRAIL, FRANCE

E-mail address: couveign@math.u-bordeaux.fr

1631