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ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS 

JEAN-MARC COUVEIGNES 

ABSTRACT. We give a method for efficiently computing isomorphisms between 
towers of Artin-Schreier extensions over a finite field. We find that isomor- 
phisms between towers of degree pn over a fixed field IFq can be computed, 
composed, and inverted in time essentially linear in pn. The method relies on 
an approximation process. 

1. INTRODUCTION 

Let IFq be a finite field with q = pd elements. Let Ln be an extension of degree 
pn of Fq given as a tower 

(1) Ln D Ln-D LD L Lo = Fq 

of nontrivial Artin-Schreier extensions each defined by 

Lk+1 = Lk(Xk+l) with xp -Xk+1 - ak = O and ak C Lk. 

We call n the length of the tower. 
Artin-Schreier towers naturally arise in computational algebraic geometry. In 

particular, let G = Gal(Fq/Fq) be the absolute Galois group of Fq. Morphisms 
between abelian varieties A and B defined over Fq induce G-morphisms between 
the Tate modules Tf(A) and Tf(B). If ? 4 p, this correspondence is known to be 
bijective by a theorem of Tate [8]. If ? = p, A is simple, and Tf(A) is nonzero, 
then the correpondance is injective. Assume the p-torsion of A and B is defined 
over Fq. One can easily show that the definition field Lk of the pk+1-torsion of 
A is an extension of Lo = IFq with degree dividing pk. Similarly the definition 
field Mk of the pk+l-torsion of B is an extension of Mo = Lo = Fq with degree 
dividing pk. Assuming the existence of an isogeny between A and B with prime to 
p degree, the fields Lk and Mk are isomorphic. These fields can be constructed by 
taking successive preimages of a p-torsion point by separable isogenies of degree p. 
Thus they naturally come as Artin-Schreier towers. In the case of nonsupersingular 
elliptic curves, such isogenies are described in terms of Hasse functions. If we are 
looking for an isogeny with a given prime to p degree between A and B, we can 
compute it by interpolation at enough pk-torsion points. This reduces to computing 
an isomorphism between the Artin-Schreier towers we have on each side. This 
method is of special interest for computing the cardinality of ordinary elliptic curves 
with the Schoof-Elkies-Atkin algorithm. See [2] where the fastest known algorithm 
for this purpose is given, assuming the characteristic p is fixed. Surveys on these 
questions are in [6, 4, 3, 5]. 

Received by the editor February 5, 1997 and, in revised form, July 24, 1998. 
1991 Mathematics Subject Classification. Primary 11Y40; Secondary 12E20. 

?)2000 American Mathematical Society 

1625 



1626 JEAN-MARC COUVEIGNES 

We shall prove the following 

Theorem 1. An isomorphism between two Artin-Schreier towers L, and M, of 
degree pn over Eq = Lo = Mo can be computed in time 0(n6p') multiplications in 
Fq for fixed q and n -+ oo. 

Computational aspects of Artin-Schreier towers have already been studied by 
D. G. Cantor in [1]. For any integer u in [O,pf[ with p-adic expansion u = u1 + 
U2P + ... + unpn-1 he sets xu = XU1lX2 ... xu-. The monomials (Xu)O<u<pk form 

a basis X of the L0-vector space Lk. If ao = 1 and ak = Xpk-l + EU=0 cuxu with 
all the cu C lFq, we say that the tower in formula (1) is a Cantor tower. One of 
the results in [1] is that for any prime p there exists a constant Kp such that two 
elements in a Cantor tower of length n over IFp can be multiplied at the expense of 
Kpn2pn operations in FFp. The same holds for Cantor towers over a nonnecessarily 
prime field Eq. We shall need this result and the corresponding algorithm. In 
order to compute an isomorphism between two Artin-Schreier towers, we shall first 
compute isomophisms between each of the two towers and a given Cantor tower. 
The expected isomorphism will then be obtained as a composition of these two 
isomorphisms. It is the purpose of Lemma 1 to state how efficiently isomorphisms 
between Artin-Schreier towers can be dealt with. 

If a7,, C Ln3 we define the ecart d(a,,,3) to be the logarithm (with base p) of 
the degree of the extension Fq(a -/)/Fq. The triangle inequality is easily checked. 
Note that d is not a distance since d(a,,,3) = 0 if and only if a -,3 is in IFq. On the 
other hand, d is invariant under translation. 

For any two positive integers i and j we define the following polynomials in IFp [X] 

Di(X) = XP and pi(X) = XP - X and Tij = X + XP + XP +... + XP 

The polynomial pi is usually called an isogeny [7]. To simplify we set Ti = Tjj. 
We have the trivial relations 

pi o pj = oj ? pi and pj o Tij = Tij o pj = pij and Tj,k ? Tij,k = Tij,k. 

If IC C ? is an extension of finite fields with cardinalities pi and pij, respectively, 
we have the following exact sequence of AC-vector spaces: 

Assume we are looking for an isomorphism 

l: Mn - Ln 

between two Artin-Schreier towers Ln and Mn, with Mn defined by 

Mn D Mn_D D M1l MO = Fq 

and 
Mk+l = Mk(Yk+l) and yp+1 - Yk+l - bk = 0 with bk C Mk. 

We define (u = yUl yU2 ... yUn similarly to Xu. We may assume that an isomor- 
phism has already been constructed between Ln-, and Mn1. In order to extend 
it, we have to solve in Ln an Artin-Schreier equation. 

Consider such an equation 

(2) p1 (Y) = YP - Y =,3. 

with ,3 C Ln and TrLn/1Fp(p3) = 0. 
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This is a linear equation over IFp. The corresponding linear system of dimension 
dpn over Fp can be solved with Gauss's algorithm at the expense of O(d3p3n) 
operations in IFp. We notice, however, that equation (2) implies 

(3) WiY) = YPi Y = 3 + 3P + .. +)3P =Ti (1) 

which is linear over the intermediate field FPi. The corresponding linear system 
of dimension dpn/i over Fpi can be solved with Gauss's algorithm at the expense 
of O(d3p3 /i3) operations in Fpi. This is better when multiplication is fast in Ln 
(e.g., when Ln is a Cantor tower). 

Equation (3), of course, does not imply equation (2) but if we know a solution 
'y to equation (3) and set Y = Z + 'y in equation (2) we get 

pi (Z) = ZP - Z = 3 - -aP + a 

Let 6 = ,3 - yP + 'y. We have pi (a) = pi (() - pi(pi = (3) - pi(y)) = 

pi(p3) - pgi(Ti(3)) = 0 sO C EFpi. We also check easily that Ti () = Ti(3) - 

pi (Ti ('y)) = Ti (i3) - pi ('y) = 0. We conclude that the ecart between a and any 
solution of (2) is at most logp(i/pgcd(d, i)). We say that 6 is an approximate 
solution to equation (2) with accuracy logp(i/pgcd(i, d)). 

Since our strategy is to deal with the smallest possible matrices, we shall take 
i = dpn- 1. This way, for ,3 c Ln and TrL./IFp (,3) = 0, a solution to YP - Y = ,B can 
be found in three steps: 

1. Compute B = Tdpn-1(f). 

2. Find a solution 'y to YP p _- Y = B which amounts to solving a linear 
system of dimension p over Ln- 

3. Solve ZP -Z = 6, where 6 = ,3-y?P + -y is in Ln-1 and RLn_ /IFP () = 0. 

And the same method is applied recursively to the equation in step 3. After 
k steps, we obtain an approximate solution to equation (2) with accuracy n - k. 
After n steps, we reduce to an Artin-Schreier equation over the base field ]Fq. 

In the rest of this paper, we provide details and a complexity analysis for the 
algorithm sketched above. 

2. ARTIN-SCHREIER TOWERS 

We recall a few elementary facts about Artin-Schreier extensions. Let IC be a 
field of characteristic p, not necessarily finite, and ? = K[X]/(XP - a) an 
Artin-Schreier extension. Set x = X mod XP - X - a. Its conjugates are the x + c 
with c C Fp . The trace is given by 

Rc/c( uixi) =-up1, when ui E K 
O<i<p-1 

and the dual basis of (1, x, x2, ... , xP-1) is (-xP-1 + 1, -Xp-2 -Xp-3, ... -x,-1). 
In such an Artin-Schreier extension, p-powers are easy to compute. Indeed 

(4) - (x + Th (a))'. 

In particular if IC is the field ]Fq with q = pd elements then 

Xi= (X + rRFq lFp(e)) 

and TrFq/Ip (a) is in IFp. Thus the p x p matrix of the Frobenius automorphism 
x __* Xq has coefficients in IFp. 
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We shall first prove a few complexity estimates concerning basic computations 
with isomorphisms bewteen Artin-Schreier towers over finite fields. 

We consider an isomorphism l between two towers Ln and Mn: 

l: -M Ln- 

The computer representation of l will consist of the images of the yk by l for 
0 < i < p l- and 1 < k < n. 

We shall see that this representation is very efficient. For 0 < k < n, we denote 
by CL(k) the complexity of multiplication in Lk. This complexity is given as a 
number of multiplications in the base field IFq, disregarding additions. We denote 
by CM (k) the complexity of multiplication in Mk. Let Cl (n) be the cost of evaluating 
l at some ,u in Mn. Let Cl(n) be the complexity of computing L-1(lv) for Iv in L,. 

We shall first prove the following 

Lemma 1. Given an isomorphism l: Mn - Ln between two Artin-Schreier tow- 
ers, we have, with the notation given above 

(5) Cl (n) < pn C L(n), 

(6) Cl(n) < 2np3CL(n), 

(7) CM (n) < 4np3 CL (n). 

We first prove inequality (5). For ,u C Mn, let us write ,u = EO<Z<P-1 iyn with 
[Li C Mn-1. Then t(pu) = t L(tui)L(y') and since we have stored the l(y i) we 
reduce to computing p multiplications in Ln and the images L(/i). Therefore 

Cl(n) < p(C(r(n -1) + CL (n)) 

and the result follows iterating the above inequality and using the easy inequality 

CL(n) > pCL((n - 1). 

In order to compute the inverse image of iv c Ln, we first express iv as a linear 
combination 

(8) ii E l/ L(Yn) 
O<i<p-i 

with vi c Ln-1 for all i. This is achieved at the expense of 2p3 multiplications in 
Ln using Gauss's algorithm. From equation (8) we deduce 

l- (IJ) = E l- (I>i)Yni 
O<i<p- 1 

We thus reduce to computing the p preimages of the vi C Ln1. Therefore 

Cl (n) < 2p3 CL (n) + p Cl(nr- 1) 

and inequality (6) follows. 
Inequality (7) follows easily from inequalities (5) and (6). This shows that if we 

can multiply efficiently in Ln7 the knowledge of t allows fast multiplication in Mn 
as well. 

The crucial step in our isomorphism computations will be the evaluation of 
polynomials Tjj at numbers ,u that are not necessarily in IFpij. Lemma 2 states how 

efficiently one can compute (Jdpl (tt) = UaP and Tdpi (,t) for a c Lk and 0 < 1 < k. 



ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS 1629 

We denote by C?(l, k) the complexity of computing Ddpl (t) for p c Lk. We 
denote by CL (1, k) the complexity of computing Tdpi (t) for p 1E Lk. In order to 
compute Tdpi (,u) we notice that 

(9) Tdpi = Td a Tp,d a ... * Tp,dpi-2 ?Tp,dpl-1 

Using this formula we obtain 

(10) 

CTL(1, k) < p(CL( (I-1, k) + CL( (- 2, k) +.. + CL (1, k) + CL (O, k)) + pd CL (k) 

If we now want to compute Ddpl (t) we use formula (4). Writing p = 

Eo<i<p-1 ixk we have 

(11) 

)dpl(b) - 3 ?dpl (4i)>?dplP(Xk) = 
i 

Jdpl (i(X)(xk + Tdpi (ak-1)) 

O<i<p-1 O<i<p-i 

p 
since xk- Xk = ak-l- 

We first assume that we already computed and stored the Tdpi (a,,) and their first 
p powers for all 1 and rs such that 0 < 1 < i' < k, which is the same as computing 
the expansions of polynomials (x + Tdpi (a,,))i for 0 < i < p -1. 

We call C?(l, k) the complexity of computing Ddpi(p) for p c Lk under this 
assumption. We define C4T (1, k) to be the complexity of computing Tdpi (i) for 
, c Lk in the same situation. 

FRom equation (11) we deduce 

C(lI k) < pC (lI k-1) p2CX(k - 1). 

Since C (1, k) = 0 as soon as 1 > k, we obtain 

dD (1, k) < p(k-_1) CL (k), 

and from equation (10) and the definition of TdpI 

(12) CT (1, k) < (p2kl + pd) CL(k) < 2p2kld CL (k). 

We now bound the cost Citj (k) of precomputing all the TdpI (a,<) and their first 
p powers for all 1 and i, such that 0 < 1 < < k. 

We first bound C; it (k + 1) - CLit (k). Indeed if we already know the Tdpi (a,,) 
and their first p powers for all 0 < 1 < c < k, then computing the Tdpi (ak) for all 
0 < 1 < k will require less than 2(k + I)p2 k2dCL (k) multiplications (using formula 
(12)) and computing the powers will take time p(k + 1) CL (k). Therefore 

CiLnit (k + 1) < C[Lnit (k) + (k + 1) (p + 2p2k2d) C L (k). 

We obtain 
C[L it (k) < 6p2k3d CXL(k). 

Lemma 2. For 0 < 1 < k and for any ,u in Lk, one can compute 4?dpl (,u) (resp. 

TdPI (,U)) in time CjL(l, k) (resp. CTL(l, k)) with 

(13) CbL(l,k) < p (kl-C x(k), 

(14) CTL (I k) < 2p2 kld CXL(k), 
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using data that only depend on Lk and can be computed once and for all in time 

Cinit (k) with 

(15) CiL it (k) < 6p2 k3 d CL (k). 

We call CLS(n) the complexity of solving equation (2) in Ln for ,3 c Ln and 
TrLn/Fp(i3) = Tdpn(p3) = 0- We shall adopt the three steps strategy described in 
the introduction. 

We first compute and store the Tdpi (a,,) for all 0 < 1 < es < n. This takes 
time C: it(n). We call CLs(n) the complexity of solving equation (2) once all this 
precomputation has been done. 

In these conditions, step 1 (the computation of B = Tdpn-I (p3)) will take time 
CL(n - 1,n). 

The second step reduces to computing the p x p matrix representing the Ln-l- 
linear map OJdpn1 Ln -* Ln in the basis (1, Xnx2 ... ,xP-). Using Gauss's 
algorithm, we then find a solution 'y to the equation ddpn-I ()) = B. 

All this is achieved at the expense of p C, (n-I, n)?2p3 CL (n-i1) multiplications. 
The third step is done in time pCL (n) + CLs(n.- 1). We thus have 

CAS(n) < CAS (n - ) + Ci4(n -1,n) + p Cj,(n -1, n) + 2pC(n -l + p (n), 

and using Lemma 2, 

CAs(n) < C~S(n - 1) + 6p2 n2 dC (n). 

Thus 

(16) CALs(n) < 12n p2 d C (n) + CAS. 

where CAS = CLS(O) is the complexity of solving an Artin-Schreier equation in the 
base field Fq. 

We now want to compute an isomorphism between two Artin-Schreier towers of 
length n over Fq: 

LnDLn-1D DLD Lo = Fq 

and 

MnDMn-1 D DM DMo Fq 

We look for an isomorphism t: Mn Ln given by t(y') for 0 < i < p and 
O < k < n. 

We let the length k increase from 0 to n. We call CM(k) the complexity of com- 
puting an isomorphism from Mk to Lk. We call CM (k) the complexity of computing 
an isomorphism from Mk to Lk assuming the TdpI (a,,) have been computed for all 
O < I < , < k. We want to bound Cm (n) - CL(n - 1). Thus assume we have 
computed the isomorphism up to length n - 1. In order to go further we have to 
solve the Artin-Schreier extension 

(17) yP - y = t(bn-1) 

over Ln. We first apply t to bn-1 in time C,(n - 1). Solving equation (17) takes 
time CAS(n). We take t(Yn) to be one of the solutions we found. We then compute 
the powers t(Yn)i for 0 < i < p - 1, which takes time pCL(n). We thus have 



ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS 1631 

and using Lemma 1 and inequality (16), 

CL(n) < CM(n - 1) + 14nip2 dCx(n) ? CAS 

Summing up we have 

CM(n) < 28np d Cx (n) + n CAS, 

and using (15), 

(18) CM(n) < 34n p2 dCL(n) + nCAS. 

Assume now we have a third Artin-Schreier tower Nn over Fq. We shall relate the 
complexity CL (n) of multiplication in Ln and the complexity Cm (n) of computing 
an isomorphism from Nn to Mn. This makes sense in case Ln has been designed 
to allow fast multiplication (e.g., Ln is a Cantor tower). 

We first compute an isomorphism Li from Mn to Ln at the expense of CL (n) 

multiplications in Fq. We then compute an isomorphism L2 from Nn to Mn at the 
expense of 

CN (n) < 34n p2 dCX (n) + nCAS 

multiplications in Fq. Using inequality (18) and inequality (7) we find 

Lemma 3. Let Ln, Mn, Nn be three Artin-Schreier towers of length n over Fq the 
field with q = pd elements and let CL (n) be the complexity of multiplication in Ln. 
Let CAS be the complexity of solving an Artin-Schreier equation in Fq. An isomor- 
phism between Mn and Nn can be found at the expense of CM (n) multiplications in 
Fq with 

Cm (n) < 17Op5 n 4dCL(n) + 2nTCAS. 

If we take Ln to be a Cantor tower we have CL (n) < Kqn2pn, where Kq only 
depends on q. Using the Berlekamp factorization algorithm we have CAS = O(p3d), 
and Theorem 1 follows. 
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