ISOMORPHISMS BETWEEN ARTIN-SCHREIER TOWERS

JEAN-MARC COUVEIGNES

Abstract

We give a method for efficiently computing isomorphisms between towers of Artin-Schreier extensions over a finite field. We find that isomorphisms between towers of degree p^{n} over a fixed field \mathbb{F}_{q} can be computed, composed, and inverted in time essentially linear in p^{n}. The method relies on an approximation process.

1. Introduction

Let \mathbb{F}_{q} be a finite field with $q=p^{d}$ elements. Let L_{n} be an extension of degree p^{n} of \mathbb{F}_{q} given as a tower

$$
\begin{equation*}
L_{n} \supset L_{n-1} \supset \cdots \supset L_{1} \supset L_{0}=\mathbb{F}_{q} \tag{1}
\end{equation*}
$$

of nontrivial Artin-Schreier extensions each defined by

$$
L_{k+1}=L_{k}\left(x_{k+1}\right) \text { with } x_{k+1}^{p}-x_{k+1}-a_{k}=0 \text { and } a_{k} \in L_{k} .
$$

We call n the length of the tower.
Artin-Schreier towers naturally arise in computational algebraic geometry. In particular, let $G=\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ be the absolute Galois group of \mathbb{F}_{q}. Morphisms between abelian varieties A and B defined over \mathbb{F}_{q} induce G-morphisms between the Tate modules $\mathcal{T}_{\ell}(A)$ and $\mathcal{T}_{\ell}(B)$. If $\ell \neq p$, this correspondence is known to be bijective by a theorem of Tate [8]. If $\ell=p, A$ is simple, and $\mathcal{T}_{\ell}(A)$ is nonzero, then the correpondance is injective. Assume the p-torsion of A and B is defined over \mathbb{F}_{q}. One can easily show that the definition field L_{k} of the p^{k+1}-torsion of A is an extension of $L_{0}=\mathbb{F}_{q}$ with degree dividing p^{k}. Similarly the definition field M_{k} of the p^{k+1}-torsion of B is an extension of $M_{0}=L_{0}=\mathbb{F}_{q}$ with degree dividing p^{k}. Assuming the existence of an isogeny between A and B with prime to p degree, the fields L_{k} and M_{k} are isomorphic. These fields can be constructed by taking successive preimages of a p-torsion point by separable isogenies of degree p. Thus they naturally come as Artin-Schreier towers. In the case of nonsupersingular elliptic curves, such isogenies are described in terms of Hasse functions. If we are looking for an isogeny with a given prime to p degree between A and B, we can compute it by interpolation at enough p^{k}-torsion points. This reduces to computing an isomorphism between the Artin-Schreier towers we have on each side. This method is of special interest for computing the cardinality of ordinary elliptic curves with the Schoof-Elkies-Atkin algorithm. See [2] where the fastest known algorithm for this purpose is given, assuming the characteristic p is fixed. Surveys on these questions are in $[6,4,3,5]$.

[^0]We shall prove the following
Theorem 1. An isomorphism between two Artin-Schreier towers L_{n} and M_{n} of degree p^{n} over $\mathbb{F}_{q}=L_{0}=M_{0}$ can be computed in time $O\left(n^{6} p^{n}\right)$ multiplications in \mathbb{F}_{q} for fixed q and $n \rightarrow \infty$.

Computational aspects of Artin-Schreier towers have already been studied by D. G. Cantor in [1]. For any integer u in [0, p^{n} [with p-adic expansion $u=u_{1}+$ $u_{2} p+\cdots+u_{n} p^{n-1}$ he sets $\chi_{u}=x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}$. The monomials $\left(\chi_{u}\right)_{0 \leq u<p^{k}}$ form a basis \mathcal{X} of the L_{0}-vector space L_{k}. If $a_{0}=1$ and $a_{k}=\chi_{p^{k}-1}+\sum_{u=0}^{p^{k}-2} c_{u} \chi_{u}$ with all the $c_{u} \in \mathbb{F}_{q}$, we say that the tower in formula (1) is a Cantor tower. One of the results in [1] is that for any prime p there exists a constant K_{p} such that two elements in a Cantor tower of length n over \mathbb{F}_{p} can be multiplied at the expense of $K_{p} n^{2} p^{n}$ operations in \mathbb{F}_{p}. The same holds for Cantor towers over a nonnecessarily prime field \mathbb{F}_{q}. We shall need this result and the corresponding algorithm. In order to compute an isomorphism between two Artin-Schreier towers, we shall first compute isomophisms between each of the two towers and a given Cantor tower. The expected isomorphism will then be obtained as a composition of these two isomorphisms. It is the purpose of Lemma 1 to state how efficiently isomorphisms between Artin-Schreier towers can be dealt with.

If $\alpha, \beta \in L_{n}$, we define the écart $\mathbf{d}(\alpha, \beta)$ to be the logarithm (with base p) of the degree of the extension $\mathbb{F}_{q}(\alpha-\beta) / \mathbb{F}_{q}$. The triangle inequality is easily checked. Note that \mathbf{d} is not a distance since $\mathbf{d}(\alpha, \beta)=0$ if and only if $\alpha-\beta$ is in \mathbb{F}_{q}. On the other hand, \mathbf{d} is invariant under translation.

For any two positive integers i and j we define the following polynomials in $\mathbb{F}_{p}[X]$

$$
\Phi_{i}(X)=X^{p^{i}} \text { and } \wp_{i}(X)=X^{p^{i}}-X \text { and } T_{i, j}=X+X^{p^{j}}+X^{p^{2 j}}+\cdots+X^{p^{(i-1) j}}
$$

The polynomial \wp_{i} is usually called an isogeny [7]. To simplify we set $T_{i}=T_{i, 1}$. We have the trivial relations

$$
\wp_{i} \circ \wp_{j}=\wp_{j} \circ \wp_{i} \text { and } \wp_{j} \circ T_{i, j}=T_{i, j} \circ \wp_{j}=\wp_{i j} \text { and } T_{j, k} \circ T_{i, j k}=T_{i j, k} .
$$

If $\mathcal{K} \subset \mathcal{L}$ is an extension of finite fields with cardinalities p^{j} and $p^{i j}$, respectively, we have the following exact sequence of \mathcal{K}-vector spaces:

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{L} \xrightarrow{\wp_{j}} \mathcal{L} \xrightarrow{T_{i, j}} \mathcal{K} \rightarrow 0 .
$$

Assume we are looking for an isomorphism

$$
\iota: M_{n} \rightarrow L_{n}
$$

between two Artin-Schreier towers L_{n} and M_{n}, with M_{n} defined by

$$
M_{n} \supset M_{n-1} \supset \cdots \supset M_{1} \supset M_{0}=\mathbb{F}_{q}
$$

and

$$
M_{k+1}=M_{k}\left(y_{k+1}\right) \text { and } y_{k+1}^{p}-y_{k+1}-b_{k}=0 \text { with } b_{k} \in M_{k} .
$$

We define $\zeta_{u}=y_{1}^{u_{1}} y_{2}^{u_{2}} \cdots y_{n}^{u_{n}}$ similarly to χ_{u}. We may assume that an isomorphism has already been constructed between L_{n-1} and M_{n-1}. In order to extend it, we have to solve in L_{n} an Artin-Schreier equation.

Consider such an equation

$$
\begin{equation*}
\wp_{1}(Y)=Y^{p}-Y=\beta \tag{2}
\end{equation*}
$$

with $\beta \in L_{n}$ and $\operatorname{Tr}_{L_{n} / \mathbb{F}_{p}}(\beta)=0$.

This is a linear equation over \mathbb{F}_{p}. The corresponding linear system of dimension $d p^{n}$ over \mathbb{F}_{p} can be solved with Gauss's algorithm at the expense of $O\left(d^{3} p^{3 n}\right)$ operations in \mathbb{F}_{p}. We notice, however, that equation (2) implies

$$
\begin{equation*}
\wp_{i}(Y)=Y^{p^{i}}-Y=\beta+\beta^{p}+\cdots+\beta^{p^{i-1}}=T_{i}(\beta) \tag{3}
\end{equation*}
$$

which is linear over the intermediate field $\mathbb{F}_{p^{i}}$. The corresponding linear system of dimension $d p^{n} / i$ over $\mathbb{F}_{p^{i}}$ can be solved with Gauss's algorithm at the expense of $O\left(d^{3} p^{3 n} / i^{3}\right)$ operations in $\mathbb{F}_{p^{i}}$. This is better when multiplication is fast in L_{n} (e.g., when L_{n} is a Cantor tower).

Equation (3), of course, does not imply equation (2) but if we know a solution γ to equation (3) and set $Y=Z+\gamma$ in equation (2) we get

$$
\wp_{1}(Z)=Z^{p}-Z=\beta-\gamma^{p}+\gamma
$$

Let $\delta=\beta-\gamma^{p}+\gamma$. We have $\wp_{i}(\delta)=\wp_{i}(\beta)-\wp_{i}\left(\wp_{1}(\gamma)\right)=\wp_{i}(\beta)-\wp_{1}\left(\wp_{i}(\gamma)\right)=$ $\wp_{i}(\beta)-\wp_{1}\left(T_{i}(\beta)\right)=0$ so $\delta \in \mathbb{F}_{p^{i}}$. We also check easily that $T_{i}(\delta)=T_{i}(\beta)-$ $\wp_{1}\left(T_{i}(\gamma)\right)=T_{i}(\beta)-\wp_{i}(\gamma)=0$. We conclude that the écart between γ and any solution of (2) is at $\operatorname{most} \log _{p}(i / \operatorname{pgcd}(d, i))$. We say that δ is an approximate solution to equation (2) with accuracy $\log _{p}(i / \operatorname{pgcd}(i, d))$.

Since our strategy is to deal with the smallest possible matrices, we shall take $i=d p^{n-1}$. This way, for $\beta \in L_{n}$ and $\operatorname{Tr}_{L_{n} / \mathbb{F}_{p}}(\beta)=0$, a solution to $Y^{p}-Y=\beta$ can be found in three steps:

1. Compute $B=T_{d p^{n-1}}(\beta)$.
2. Find a solution γ to $Y^{p^{d p^{n-1}}}-Y=B$ which amounts to solving a linear system of dimension p over L_{n-1}.
3. Solve $Z^{p}-Z=\delta$, where $\delta=\beta-\gamma^{p}+\gamma$ is in L_{n-1} and $\operatorname{Tr}_{L_{n-1} / \mathbb{F}_{p}}(\delta)=0$.

And the same method is applied recursively to the equation in step 3. After k steps, we obtain an approximate solution to equation (2) with accuracy $n-k$. After n steps, we reduce to an Artin-Schreier equation over the base field \mathbb{F}_{q}.

In the rest of this paper, we provide details and a complexity analysis for the algorithm sketched above.

2. Artin-Schreier towers

We recall a few elementary facts about Artin-Schreier extensions. Let \mathcal{K} be a field of characteristic p, not necessarily finite, and $\mathcal{L}=\mathcal{K}[X] /\left(X^{p}-X-\alpha\right)$ an Artin-Schreier extension. Set $x=X \bmod X^{p}-X-\alpha$. Its conjugates are the $x+c$ with $c \in \mathbb{F}_{p}$. The trace is given by

$$
\operatorname{Tr}_{\mathcal{L} / \mathcal{K}}\left(\sum_{0 \leq i \leq p-1} u_{i} x^{i}\right)=-u_{p-1} \text { when } u_{i} \in \mathcal{K}
$$

and the dual basis of $\left(1, x, x^{2}, \ldots, x^{p-1}\right)$ is $\left(-x^{p-1}+1,-x^{p-2},-x^{p-3}, \ldots,-x,-1\right)$.
In such an Artin-Schreier extension, p-powers are easy to compute. Indeed

$$
\begin{equation*}
x^{i p^{h}}=\left(x+T_{h}(\alpha)\right)^{i} . \tag{4}
\end{equation*}
$$

In particular if \mathcal{K} is the field \mathbb{F}_{q} with $q=p^{d}$ elements then

$$
x^{i q}=\left(x+\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(\alpha)\right)^{i},
$$

and $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(\alpha)$ is in \mathbb{F}_{p}. Thus the $p \times p$ matrix of the Frobenius automorphism $x \mapsto x^{q}$ has coefficients in \mathbb{F}_{p}.

We shall first prove a few complexity estimates concerning basic computations with isomorphisms bewteen Artin-Schreier towers over finite fields.

We consider an isomorphism ι between two towers L_{n} and M_{n} :

$$
\iota: M_{n} \rightarrow L_{n}
$$

The computer representation of ι will consist of the images of the y_{k}^{i} by ι for $0 \leq i \leq p-1$ and $1 \leq k \leq n$.

We shall see that this representation is very efficient. For $0 \leq k \leq n$, we denote by $\mathcal{C}_{\times}^{L}(k)$ the complexity of multiplication in L_{k}. This complexity is given as a number of multiplications in the base field \mathbb{F}_{q}, disregarding additions. We denote by $\mathcal{C}_{\times}^{M}(k)$ the complexity of multiplication in M_{k}. Let $\mathcal{C}_{\iota}(n)$ be the cost of evaluating ι at some μ in M_{n}. Let $\mathcal{C}_{\iota}^{\bullet}(n)$ be the complexity of computing $\iota^{-1}(\nu)$ for ν in L_{n}.

We shall first prove the following
Lemma 1. Given an isomorphism $\iota: M_{n} \rightarrow L_{n}$ between two Artin-Schreier towers, we have, with the notation given above

$$
\begin{align*}
\mathcal{C}_{\iota}(n) & \leq p n \mathcal{C}_{\times}^{L}(n) \tag{5}\\
\mathcal{C}_{\iota}^{\bullet}(n) & \leq 2 n p^{3} \mathcal{C}_{\times}^{L}(n) \tag{6}\\
\mathcal{C}_{\times}^{M}(n) & \leq 4 n p^{3} \mathcal{C}_{\times}^{L}(n) \tag{7}
\end{align*}
$$

We first prove inequality (5). For $\mu \in M_{n}$, let us write $\mu=\sum_{0 \leq i \leq p-1} \mu_{i} y_{n}^{i}$ with $\mu_{i} \in M_{n-1}$. Then $\iota(\mu)=\sum_{i} \iota\left(\mu_{i}\right) \iota\left(y_{n}^{i}\right)$ and since we have stored the $\iota\left(y_{n}^{i}\right)$, we reduce to computing p multiplications in L_{n} and the images $\iota\left(\mu_{i}\right)$. Therefore

$$
\mathcal{C}_{\iota}(n) \leq p\left(\mathcal{C}_{\iota}(n-1)+\mathcal{C}_{\times}^{L}(n)\right)
$$

and the result follows iterating the above inequality and using the easy inequality

$$
\mathcal{C}_{\times}^{L}(n) \geq p \mathcal{C}_{\times}^{L}(n-1)
$$

In order to compute the inverse image of $\nu \in L_{n}$, we first express ν as a linear combination

$$
\begin{equation*}
\nu=\sum_{0 \leq i \leq p-1} \nu_{i} \iota\left(y_{n}^{i}\right) \tag{8}
\end{equation*}
$$

with $\nu_{i} \in L_{n-1}$ for all i. This is achieved at the expense of $2 p^{3}$ multiplications in L_{n} using Gauss's algorithm. From equation (8) we deduce

$$
\iota^{-1}(\nu)=\sum_{0 \leq i \leq p-1} \iota^{-1}\left(\nu_{i}\right) y_{n}^{i}
$$

We thus reduce to computing the p preimages of the $\nu_{i} \in L_{n-1}$. Therefore

$$
\mathcal{C}_{\iota}^{\bullet}(n) \leq 2 p^{3} \mathcal{C}_{\times}^{L}(n)+p \mathcal{C}_{\iota}^{\bullet}(n-1)
$$

and inequality (6) follows.
Inequality (7) follows easily from inequalities (5) and (6). This shows that if we can multiply efficiently in L_{n}, the knowledge of ι allows fast multiplication in M_{n} as well.

The crucial step in our isomorphism computations will be the evaluation of polynomials $T_{i, j}$ at numbers μ that are not necessarily in $\mathbb{F}_{p^{i j}}$. Lemma 2 states how efficiently one can compute $\Phi_{d p^{l}}(\mu)=\mu^{p^{d p^{l}}}$ and $T_{d p^{l}}(\mu)$ for $\mu \in L_{k}$ and $0 \leq l \leq k$.

We denote by $\mathcal{C}_{\Phi}^{L}(l, k)$ the complexity of computing $\Phi_{d p^{l}}(\mu)$ for $\mu \in L_{k}$. We denote by $\mathcal{C}_{T}^{L}(l, k)$ the complexity of computing $T_{d p}(\mu)$ for $\mu \in L_{k}$. In order to compute $T_{d p^{l}}(\mu)$ we notice that

$$
\begin{equation*}
T_{d p^{l}}=T_{d} \circ T_{p, d} \circ \cdots \circ T_{p, d p^{l-2}} \circ T_{p, d p^{l-1}} \tag{9}
\end{equation*}
$$

Using this formula we obtain

$$
\begin{equation*}
\mathcal{C}_{T}^{L}(l, k) \leq p\left(\mathcal{C}_{\Phi}^{L}(l-1, k)+\mathcal{C}_{\Phi}^{L}(l-2, k)+\cdots+\mathcal{C}_{\Phi}^{L}(1, k)+\mathcal{C}_{\Phi}^{L}(0, k)\right)+p d \mathcal{C}_{\times}^{L}(k) . \tag{10}
\end{equation*}
$$

If we now want to compute $\Phi_{d p^{l}}(\mu)$ we use formula (4). Writing $\mu=$ $\sum_{0 \leq i \leq p-1} \mu_{i} x_{k}^{i}$ we have

$$
\begin{equation*}
\Phi_{d p^{l}}(\mu)=\sum_{0 \leq i \leq p-1} \Phi_{d p^{l}}\left(\mu_{i}\right) \Phi_{d p^{l}}\left(x_{k}^{i}\right)=\sum_{0 \leq i \leq p-1} \Phi_{d p^{l}}\left(\mu_{i}\right)\left(x_{k}+T_{d p^{l}}\left(a_{k-1}\right)\right)^{i} \tag{11}
\end{equation*}
$$

since $x_{k}^{p}-x_{k}=a_{k-1}$.
We first assume that we already computed and stored the $T_{d p^{l}}\left(a_{\kappa}\right)$ and their first p powers for all l and κ such that $0 \leq l \leq \kappa<k$, which is the same as computing the expansions of polynomials $\left(x+T_{d p^{l}}\left(a_{\kappa}\right)\right)^{i}$ for $0 \leq i \leq p-1$.

We call $\tilde{\mathcal{C}}_{\Phi}^{L}(l, k)$ the complexity of computing $\Phi_{d p}(\mu)$ for $\mu \in L_{k}$ under this assumption. We define $\tilde{\mathcal{C}}_{T}^{L}(l, k)$ to be the complexity of computing $T_{d p^{l}}(\mu)$ for $\mu \in L_{k}$ in the same situation.

From equation (11) we deduce

$$
\tilde{\mathcal{C}}_{\Phi}^{L}(l, k) \leq p \tilde{\mathcal{C}}_{\Phi}^{L}(l, k-1)+p^{2} \mathcal{C}_{\times}^{L}(k-1) .
$$

Since $\mathcal{C}_{\Phi}^{L}(l, k)=0$ as soon as $l \geq k$, we obtain

$$
\tilde{\mathcal{C}}_{\Phi}^{L}(l, k) \leq p(k-l) \mathcal{C}_{\times}^{L}(k),
$$

and from equation (10) and the definition of $T_{d p^{l}}$

$$
\begin{equation*}
\tilde{\mathcal{C}}_{T}^{L}(l, k) \leq\left(p^{2} k l+p d\right) \mathcal{C}_{\times}^{L}(k) \leq 2 p^{2} k l d \mathcal{C}_{\times}^{L}(k) \tag{12}
\end{equation*}
$$

We now bound the cost $\mathcal{C}_{\text {init }}^{L}(k)$ of precomputing all the $T_{d p^{l}}\left(a_{\kappa}\right)$ and their first p powers for all l and κ such that $0 \leq l \leq \kappa<k$.

We first bound $\mathcal{C}_{\text {init }}^{L}(k+1)-\mathcal{C}_{\text {init }}^{L}(k)$. Indeed if we already know the $T_{d p l}\left(a_{\kappa}\right)$ and their first p powers for all $0 \leq l \leq \kappa<k$, then computing the $T_{d p^{l}}\left(a_{k}\right)$ for all $0 \leq l \leq k$ will require less than $2(k+1) p^{2} k^{2} d \mathcal{C}_{\times}^{L}(k)$ multiplications (using formula (12)) and computing the powers will take time $p(k+1) \mathcal{C}_{\times}^{L}(k)$. Therefore

$$
\mathcal{C}_{\text {init }}^{L}(k+1) \leq \mathcal{C}_{\text {init }}^{L}(k)+(k+1)\left(p+2 p^{2} k^{2} d\right) \mathcal{C}_{\times}^{L}(k) .
$$

We obtain

$$
\mathcal{C}_{\text {init }}^{L}(k) \leq 6 p^{2} k^{3} d \mathcal{C}_{\times}^{L}(k) .
$$

Lemma 2. For $0 \leq l \leq k$ and for any μ in L_{k}, one can compute $\Phi_{d p^{l}}(\mu)$ (resp. $\left.T_{\text {dpl}}(\mu)\right)$ in time $\tilde{\mathcal{C}}_{\Phi}^{L}(l, k)$ (resp. $\left.\tilde{\mathcal{C}}_{T}^{L}(l, k)\right)$ with

$$
\begin{align*}
& \tilde{\mathcal{C}}_{\Phi}^{L}(l, k) \leq p(k-l) \mathcal{C}_{\times}^{L}(k), \tag{13}\\
& \tilde{\mathcal{C}}_{T}^{L}(l, k) \leq 2 p^{2} k l d \mathcal{C}_{\times}^{L}(k), \tag{14}
\end{align*}
$$

using data that only depend on L_{k} and can be computed once and for all in time $\mathcal{C}_{\text {init }}^{L}(k)$ with

$$
\begin{equation*}
\mathcal{C}_{\text {init }}^{L}(k) \leq 6 p^{2} k^{3} d \mathcal{C}_{\times}^{L}(k) \tag{15}
\end{equation*}
$$

We call $\mathcal{C}_{A S}^{L}(n)$ the complexity of solving equation (2) in L_{n} for $\beta \in L_{n}$ and $\operatorname{Tr}_{L_{n} / \mathbb{F}_{p}}(\beta)=T_{d p^{n}}(\beta)=0$. We shall adopt the three steps strategy described in the introduction.

We first compute and store the $T_{d p^{l}}\left(a_{\kappa}\right)$ for all $0 \leq l \leq \kappa<n$. This takes time $\mathcal{C}_{\text {init }}^{L}(n)$. We call $\tilde{\mathcal{C}}_{A S}^{L}(n)$ the complexity of solving equation (2) once all this precomputation has been done.

In these conditions, step 1 (the computation of $B=T_{d p^{n-1}}(\beta)$) will take time $\tilde{\mathcal{C}}_{T}^{L}(n-1, n)$.

The second step reduces to computing the $p \times p$ matrix representing the $L_{n-1^{-}}$ linear map $\wp_{d p^{n-1}}: L_{n} \rightarrow L_{n}$ in the basis ($1, x_{n}, x_{n}^{2}, \ldots, x_{n}^{p-1}$). Using Gauss's algorithm, we then find a solution γ to the equation $\wp_{d p^{n-1}}(\gamma)=B$.

All this is achieved at the expense of $p \tilde{\mathcal{C}}_{\Phi}^{L}(n-1, n)+2 p^{3} \mathcal{C}_{\times}^{L}(n-1)$ multiplications.
The third step is done in time $p \mathcal{C}_{\times}^{L}(n)+\tilde{\mathcal{C}}_{A S}^{L}(n-1)$. We thus have

$$
\tilde{\mathcal{C}}_{A S}^{L}(n) \leq \tilde{\mathcal{C}}_{A S}^{L}(n-1)+\tilde{\mathcal{C}}_{T}^{L}(n-1, n)+p \tilde{\mathcal{C}}_{\Phi}^{L}(n-1, n)+2 p^{3} \mathcal{C}_{\times}^{L}(n-1)+p \mathcal{C}_{\times}^{L}(n)
$$

and using Lemma 2,

$$
\tilde{\mathcal{C}}_{A S}^{L}(n) \leq \tilde{\mathcal{C}}_{A S}^{L}(n-1)+6 p^{2} n^{2} d \mathcal{C}_{\times}^{L}(n)
$$

Thus

$$
\begin{equation*}
\tilde{\mathcal{C}}_{A S}^{L}(n) \leq 12 n^{2} p^{2} d \mathcal{C}_{\times}^{L}(n)+\mathcal{C}_{A S} \tag{16}
\end{equation*}
$$

where $\mathcal{C}_{A S}=\mathcal{C}_{A S}^{L}(0)$ is the complexity of solving an Artin-Schreier equation in the base field \mathbb{F}_{q}.

We now want to compute an isomorphism between two Artin-Schreier towers of length n over \mathbb{F}_{q} :

$$
L_{n} \supset L_{n-1} \supset \cdots \supset L_{1} \supset L_{0}=\mathbb{F}_{q}
$$

and

$$
M_{n} \supset M_{n-1} \supset \cdots \supset M_{1} \supset M_{0}=\mathbb{F}_{q}
$$

We look for an isomorphism $\iota: M_{n} \rightarrow L_{n}$ given by $\iota\left(y_{k}^{i}\right)$ for $0 \leq i<p$ and $0 \leq k \leq n$.

We let the length k increase from 0 to n. We call $\mathcal{C}_{M}^{L}(k)$ the complexity of computing an isomorphism from M_{k} to L_{k}. We call $\tilde{\mathcal{C}}_{M}^{L}(k)$ the complexity of computing an isomorphism from M_{k} to L_{k} assuming the $T_{d p^{2}}\left(a_{\kappa}\right)$ have been computed for all $0 \leq l \leq \kappa<k$. We want to bound $\tilde{\mathcal{C}}_{M}^{L}(n)-\tilde{\mathcal{C}}_{M}^{L}(n-1)$. Thus assume we have computed the isomorphism up to length $n-1$. In order to go further we have to solve the Artin-Schreier extension

$$
\begin{equation*}
Y^{p}-Y=\iota\left(b_{n-1}\right) \tag{17}
\end{equation*}
$$

over L_{n}. We first apply ι to b_{n-1} in time $\mathcal{C}_{\iota}(n-1)$. Solving equation (17) takes time $\tilde{\mathcal{C}}_{A S}^{L}(n)$. We take $\iota\left(y_{n}\right)$ to be one of the solutions we found. We then compute the powers $\iota\left(y_{n}\right)^{i}$ for $0 \leq i \leq p-1$, which takes time $p \mathcal{C}_{\times}^{L}(n)$. We thus have

$$
\tilde{\mathcal{C}}_{M}^{L}(n) \leq \tilde{\mathcal{C}}_{M}^{L}(n-1)+\mathcal{C}_{\iota}(n-1)+\tilde{\mathcal{C}}_{A S}^{L}(n)+p \mathcal{C}_{\times}^{L}(n)
$$

and using Lemma 1 and inequality (16),

$$
\tilde{\mathcal{C}}_{M}^{L}(n) \leq \tilde{\mathcal{C}}_{M}^{L}(n-1)+14 n^{2} p^{2} d \mathcal{C}_{\times}^{L}(n)+\mathcal{C}_{A S} .
$$

Summing up we have

$$
\tilde{\mathcal{C}}_{M}^{L}(n) \leq 28 n^{2} p^{2} d \mathcal{C}_{\times}^{L}(n)+n \mathcal{C}_{A S}
$$

and using (15),

$$
\begin{equation*}
\mathcal{C}_{M}^{L}(n) \leq 34 n^{3} p^{2} d \mathcal{C}_{\times}^{L}(n)+n \mathcal{C}_{A S} . \tag{18}
\end{equation*}
$$

Assume now we have a third Artin-Schreier tower N_{n} over \mathbb{F}_{q}. We shall relate the complexity $\mathcal{C}_{\times}^{L}(n)$ of multiplication in L_{n} and the complexity $\mathcal{C}_{N}^{M}(n)$ of computing an isomorphism from N_{n} to M_{n}. This makes sense in case L_{n} has been designed to allow fast multiplication (e.g., L_{n} is a Cantor tower).

We first compute an isomorphism ι_{1} from M_{n} to L_{n} at the expense of $\mathcal{C}_{M}^{L}(n)$ multiplications in \mathbb{F}_{q}. We then compute an isomorphism ι_{2} from N_{n} to M_{n} at the expense of

$$
\mathcal{C}_{N}^{M}(n) \leq 34 n^{3} p^{2} d \mathcal{C}_{\times}^{M}(n)+n \mathcal{C}_{A S}
$$

multiplications in \mathbb{F}_{q}. Using inequality (18) and inequality (7) we find
Lemma 3. Let L_{n}, M_{n}, N_{n} be three Artin-Schreier towers of length n over \mathbb{F}_{q} the field with $q=p^{d}$ elements and let $\mathcal{C}_{\times}^{L}(n)$ be the complexity of multiplication in L_{n}. Let $\mathcal{C}_{A S}$ be the complexity of solving an Artin-Schreier equation in \mathbb{F}_{q}. An isomorphism between M_{n} and N_{n} can be found at the expense of $\mathcal{C}_{N}^{M}(n)$ multiplications in \mathbb{F}_{q} with

$$
\mathcal{C}_{N}^{M}(n) \leq 170 p^{5} n^{4} d \mathcal{C}_{\times}^{L}(n)+2 n \mathcal{C}_{A S}
$$

If we take L_{n} to be a Cantor tower we have $\mathcal{C}_{\times}^{L}(n) \leq K_{q} n^{2} p^{n}$, where K_{q} only depends on q. Using the Berlekamp factorization algorithm we have $\mathcal{C}_{A S}=O\left(p^{3} d\right)$, and Theorem 1 follows.

References

[1] David G. Cantor, On arithmetical algorithms over finite fields, Journal of Combinatorics, series A 50 (1989), 285-300. MR 90f: 11100
[2] Jean-Marc Couveignes, Computing l-isogenies with the p-torsion, Algorithmic Number Theory, A.N.T.S. II (H. Cohen, ed.), vol. 1122, Springer, 1996, pp. 59-65. MR 98j:11046
[3] Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory, in honor of A.O.L Atkin, AMS/IP Studies in Advanced Mathematics, vol. 7, AMS/IP, 1998, pp. 21-76. MR 99a:11078
[4] Reynald Lercier and François Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in Cryptology, EUROCRYPT 95 (L.C. Guillou and J.-J. Quisquater, eds.), Lecture Notes in Computer Science, vol. 921, Springer, 1995, pp. 79-94.
[5] _, Algorithms for computing isogenies between elliptic curves, Computational perspectives on number theory, in honor of A.O.L. Atkin, AMS/IP Studies in Advanced Mathematics, vol. 7, AMS/IP, 1998, pp. 77-94. MR 96h:11060
[6] René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1995), no. 1. MR 97i:11070
[7] Jean-Pierre Serre, Groupes algébriques et corps de classes, Hermann, 1959. MR 21:1973
[8] John Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Math. 2 (1966), 134-144. MR 34:5829

Groupe de Recherche en Mathématiques et Informatique du Mirail, Université de Toulouse II, Le Mirail, France

E-mail address: couveign@math.u-bordeaux.fr

[^0]: Received by the editor February 5, 1997 and, in revised form, July 24, 1998.
 1991 Mathematics Subject Classification. Primary 11Y40; Secondary 12E20.

